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faculty at Télécom SudParis, an IMT school, member of IP Paris
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Research Interests

keywords: network security, network programming, interactions between
AI and cybersecurity

1. Machine learning-based network intrusion detection

• traffic classification, anomaly detection
• traffic generation (testbed, synthesis, quality)
• intrusion detector evaluation (reproducibility, robustness)
• adversarial examples against intrusion detection systems
• collaborative intrusion detection

2. Network attack mitigation using programmable networks

• adverse impact-sensitive, automated selection of remediations
• automated deployment of security policy/measures
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• adversarial examples against intrusion detection systems
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2. Network attack mitigation using programmable networks
• adverse impact-sensitive, automated selection of remediations
• automated deployment of security policy/measures

I resource-security tradeoff optimization (MDP, algebraic constraint solving)
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Global Shortage of Cybersecurity Experts

World Economic Forum, April 2024

L’Usine Digitale, July 2024

Cybernews, May 2024
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Ever-evolving Threat Landscape

Cloud migration from on-premise to remote services
lack of network control and observability

5G and IoT 5G enables customized IoT network slices
IoT devices often vulnerable and, now exposed

ICS more remote access to Industrial Control Systems
critical ICS rely on obsolete network protocols
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Ever-evolving Threat Landscape

Cloud migration from on-premise to remote services
lack of network control and observability

5G and IoT 5G enables customized IoT network slices
IoT devices often vulnerable and, now exposed

ICS more remote access to Industrial Control Systems
critical ICS rely on obsolete network protocols

(Gen)AI with the advent of LLMs, GenAI tools are pervasive
AI risks are emerging and not well understood
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Opportunities to use AI for Cybersecurity

NIST Cybersecurity Framework, February
2024

Alleviate experts’ load

Automate complex tasks

Analyse vast amount of data

Uncover underlying patterns

Support decision making

Anticipate future threats
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What is an intrusion?

NIST definition (2007)

(or incident)

A violation or imminent threat of violation of computer security
policies, acceptable use policies, or standard security practices.

Additionally,

Incidents have many causes, such as malware, attackers gaining
unauthorized access to systems from the Internet, and authorized
users of systems who misuse their privileges or attempt to gain
additional privileges for which they are not authorized.

ANSSI definition (CyberDico, 2024)

Intrusion is the act of a person or object entering a defined space
(physical, logical, relational) where its presence is not desired.
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Intrusion Detection

Alert on any suspicious activity enabling later filtering or correlation

What is suspicious?

• misuse: activity known to be malicious
• anomaly: activity deviant from normal

How to capture suspicious activities?
• at the host: process, log, file, etc.
• in the network: flow, packet headers, payloads, etc.

Huge volume of activities incur longer processing time
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Misuse detection

Approach mostly attack signatures

Features packet headers, flow stats, TCP connections, etc.

Trends data mining and machine learning on labeled traffic
datasets

Challenges lack of datasets (existence, diversity, freshness,
reliability)
frequency of model re-training
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Anomaly detection

Approach (normal) behavioural profiles

Learning unsupervised, semi-supervised, supervised

Challenges cleanliness of datasets
accuracy of normal behaviour
high false positive rate

Works well with low-entropy normal behaviour
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Detection’s ML Pipeline

Inference refers to the trained detection model decision-making
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Intrusion Detection as a Classification Task

Misuse detection

Each class encodes a pattern of features, akin to a signature
Model is limited to attack classes in the training set

Alleviates nonetheless the pain and risk of manual signature design

Anomaly detection

Training on benign data only yields patterns of normal behaviour

The trained detection model enables detecting deviations
Lacks precision as an anomaly does not indicate malice

Training classifiers on huge amounts of data still seems profitable

Performance depends on the data quality, i.e., representation,
representativeness, etc.

Myth: contrary to signatures, anomaly-based detection uses ML [1]
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Most Used ML Algorithms for IDS [1]
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How to Capture Network Traffic?

Network traffic is the set of communications exchanged in a network
from a vantage point
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How to Capture Network Traffic?

Between two hosts, we can observe packet by packet
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How to Capture Network Traffic?

Between two hosts, we can observe a sequence of packets
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How to Capture Network Traffic?

A flow is defined as a sequence of packet sharing common
characteristics
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How to Capture Network Traffic?

A bidirectional flow considers both directions
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How to Represent Network Traffic?

1. Traffic is captured from the data plane as pcap
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How to Represent Network Traffic?

2. A feature extractor extracts information from the pcap to represent
the traffic in a feature space
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How to Represent Network Traffic?

2.a. Packet-level information deals with the flow identifier (at least, src
IP, src Port, dst IP, dst Port, L4 Protocol) and related header
information
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How to Represent Network Traffic?

2.b. Packet payload may also be represented but often absent (due to
privacy or encryption)
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How to Represent Network Traffic?

2.c. Flow-level information attempts at summarizing a sequence of
packets sharing the same flow identifier (length, duration, IAT, etc.)

19/79 2024/07/15 G. Blanc (TSP, IP Paris) Learning-based Network Intrusion Detection



How to Represent Network Traffic?

3. Among other preprocessing steps, the dimension of the feature
space can be reduced through feature selection (manual) or
dimension reduction

19/79 2024/07/15 G. Blanc (TSP, IP Paris) Learning-based Network Intrusion Detection



How to Represent Network Traffic?

X. Alternatively, some approaches may resort to feature learning,
which automatically discovers an appropriate representation
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Flow Information

Flow-level datasets are very popular to briefly represent network traffic.
Here is a NetFlow [2] based feature set [3].

Feature Description
IPv4 Src Addr – L7 Proto –
IPv4 Dst Addr – In Bytes Incoming number

of bytes
L4 Src Port – Out Bytes Outgoing number

of bytes
L4 Dst Port – In Pkts Incoming number

of packets
Protocol IP protocol identi-

fier
Out Pkts Outgoing number

of packets
TCP Flags Cumulative of all

TCP flags
Flow Duration Flow duration in

milliseconds

Other wider feature sets of dimensions 43 [4] and 83 [5] using NetFlow
and CICFlow formats, respectively.
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How to Evaluate an ML-based NIDS?

Pictures from Apruzzese et al. [1]
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How to Evaluate an ML-based NIDS?
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Classification Metrics [6]

Evaluating an IDS is often considered a binary classification problem.
Leveraging the confusion matrix, we can measure:

Accuracy: TN+TP
TP+FP+TN+FN)

(overall success rate)

Precision: TP
TP+FP (aka positive predicted value)

Detection Rate: TP
TP+FN (aka sensitivity or recall)

True Negative Rate: TN
TN+FP (aka specificity )

False Positive Rate: FP
FP+TN = 1− TNR (aka fall-out)

F-measure: 2× precision×recall
precision+recall

Receiver Operating Characteristic curve: plot of the sensitivity as
a function of 1− specificity
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Datasets

Packet-based: available in pcap, contains payload, metadata
depending on used protocols

Flow-based: condensed metadata-rich information, no payload,
aggregates all packet sharing some properties (e.g., 5-tuple) within
a time window

Other data: hybrid data set (packet/flow, network/host)

Ring et al. [7] surveyed existing datasets and grouped them:

public? attacks?

metadata?

which format

the volume of data and its duration

the kind of traffic and the type of network

balanced? labeled? predefined splits?
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Towards a Standard Feature Set [4]
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Some Sample Shallow Detection Models [8]

Bayesian Network
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Some Sample Shallow Detection Models [8]

Decision Tree
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Some Sample Shallow Detection Models [8]

Hidden Markov Model
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Deep Learning based Intrusion Detection

ML has been proven successful for intrusion detection [1]

DL offers opportunities

• when the rate of new attacks outpace the ability to write and deploy
signatures

• when there is a huge amount (number of samples) of complex data
(number of features)

but DL has not proven to outperform shallow ML [9, 10]

• no consistent evaluation methodology
• no consistent performance

Current obstacles hamper DL-based IDS research [10]

• Limited availability of public IDS datasets (small, old, internally
generated, private)

• Inability to test in operational scenarios (detection rate, speed, memory
usage, etc.)

• Difficulty to explain decisions (blackbox)
• Often tailored to specific threats (vulnerability to concept drift)
• Potential vulnerability to smart attackers (e.g., adversarial examples)
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DL offers opportunities
• when the rate of new attacks outpace the ability to write and deploy

signatures
• when there is a huge amount (number of samples) of complex data

(number of features)
but DL has not proven to outperform shallow ML [9, 10]
• no consistent evaluation methodology
• no consistent performance

Current obstacles hamper DL-based IDS research [10]
• Limited availability of public IDS datasets (small, old, internally

generated, private)
• Inability to test in operational scenarios (detection rate, speed, memory

usage, etc.)
• Difficulty to explain decisions (blackbox)
• Often tailored to specific threats (vulnerability to concept drift)

I yet more performant than general detectors [11]

• Potential vulnerability to smart attackers (e.g., adversarial examples)
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Autoencoders (AE)

AEs are unsupervised NNs that learn to copy their inputs to their outputs
under some constraints [12].
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Semi-supervised IoT Anomaly-based IDS [12]
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Siamese Network based Feature Learning [13]

Goal: Minimize L =
∑N

i=1 Loss(Di ,Yi)

Cost:
(|ci |

2

)
for positive pairs, i.e., samples from the same

class ci

|ci | × |cj | for negative pairs, i.e., samples from
different classes, ci and cj
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Siamese Network based Feature Learning [13]

It improved binary- and multi-classification results in both unbalanced
and small datasets
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Practical Case Study: Kitsune [14]

Kitsune is made of 3 main components:

Feature Extractor: to create n-feature vectors (~x) that describe
packets and the channel they came from

Feature Mapper: to create smaller instances v from ~x according to
a learnt mapping

Anomaly Detector (aka KitNET ): to detect abnormal packet
representations v
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Practical Case Study: Kitsune [14]
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Practical Case Study: Kitsune [14]
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ML/DL-based IDS: Takeaways

IDS is a classification task (either binary or multiclass)

Network traffic is represented either at packet-level or flow-level

Yet no standardized representation exists (each dataset has its own
feature set)

Many ML and DL algorithms have been trialed, with no superiority of
the latter on the former

Unsupervised approaches are more realistic and may yield better
(yet less interpretable) representations

Anomaly detection is best applied to detect specific behaviours
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Common Pitfalls [15]
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Common Pitfalls [15]

A Sampling bias

B Label inaccuracy
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Common Pitfalls [15]

A Sampling bias
• collected data does not sufficiently represent the true data distribution

of the underlying security problem

B Label inaccuracy
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Common Pitfalls [15]

A Sampling bias

B Label inaccuracy
• labels may suffer from changes in their distribution over time
• labels should be verified manually whenever possible
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Common Pitfalls [15]

C Data snooping

D Spurrious correlations

E Biased parameters
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Common Pitfalls [15]

C Data snooping
• clumsy data splitting yielding information that should not be available at

training time

D Spurrious correlations

E Biased parameters
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Common Pitfalls [15]

C Data snooping

D Spurrious correlations
• artifacts that correlate with the task to solve without being related to it
• need to apply explanation techniques

E Biased parameters
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Common Pitfalls [15]

C Data snooping

D Spurrious correlations

E Biased parameters
• parameters indirectly depending on the test set
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Common Pitfalls [15]

F Inappropriate baselines

G Inappropriate measures

H Base rate fallacy [16]
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Common Pitfalls [15]

F Inappropriate baselines
• need for a simple baseline to motivate the need for a complex ML

system

G Inappropriate measures

H Base rate fallacy [16]
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Common Pitfalls [15]

F Inappropriate baselines

G Inappropriate measures
• evaluation should take into account the data specificities

H Base rate fallacy [16]

33/79 2024/07/15 G. Blanc (TSP, IP Paris) Learning-based Network Intrusion Detection



Common Pitfalls [15]

F Inappropriate baselines

G Inappropriate measures

H Base rate fallacy [16]
• ignoring class imbalance leads to performance overestimation
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Common Pitfalls [15]

I Lab-only evaluation

J Inappropriate threat model
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Common Pitfalls [15]

I Lab-only evaluation
• detection methods evaluated in a closed world setting [17]
• e.g., need to consider temporal and spatial relation in the data [18]

J Inappropriate threat model
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Common Pitfalls [15]

I Lab-only evaluation

J Inappropriate threat model
• security of the detection model (adaptive adversary [19]) is not

considered
• systematically investigate possible vulnerabilities, focusing on white-box

attacks
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Practical Case Study: Kitsune [14]

Kitsune’s paper has been shown [15] to suffer from:

Lab-only evaluation ( I ): a Mirai dataset exhibits crushing attack

traffic leading to potential spurrious correlations ( D )

Inappropriate baseline ( F ): an experiment using a simple boxplot
approach has been shown to exhibit similar AUC, but outperforms
Kitsune on FPR
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Practical Case Study: Kitsune [14]

Kitsune’s paper has been shown [15] to suffer from:

Lab-only evaluation ( I ): a Mirai dataset exhibits crushing attack

traffic leading to potential spurrious correlations ( D )

Inappropriate baseline ( F ): an experiment using a simple boxplot
approach has been shown to exhibit similar AUC, but outperforms
Kitsune on FPR

Detector AUC TPR
Kitsune 0.968 0.882
Boxplot 0.998 0.996
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Issues in Testing IDS

Back in 2003, NIST identified several challenges [20]:

difficulties in collecting attack scripts and victim software

differing requirements for testing signature based vs. anomaly
based IDS

differing requirements for testing network based vs. host based IDS
approaches to using background traffic in IDS tests:
• no background traffic/logs
• real traffic/logs
• sanitized traffic/logs
• generating traffic on a testbed network
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Evaluation Metrics

In 2015, IDS evaluation best practices measure (w.r.t. attack
detection) [21]:

Attack detection accuracy: accuracy of an IDS in the presence of
mixed workloads

Attack coverage: accuracy of an IDS in the presence of pure
malicious workloads
Resistance to evasion techniques:
• overlooked in comparison to above two, as it was considered to be of

limited importance from a practical perspective [17]
• involves pure malicious and mixed workloads

Attack detection and reporting speed: relevant for distributed IDS

Other measurements address performance properties of IDS.
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SoTA of the Evaluation of ML/DL-based IDS

Evaluation of an IDS requires:

a testing environment

a dataset

a set of metrics

Evaluation methodologies usually focus on:

dataset quality

detection performance metrics

realistic environment provision
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Shortcomings

Most ML/DL-based IDS proposals:

share the same set of metrics
• accuracy instead of precision and recall
• fail to use MCC when the dataset is imbalanced

use widespread IDS datasets
• KDD99 has been over-used
• many datasets suffer from shortcut learning [22] or labeling

errors [23, 24]
propose comparisons
• experimental protocols differ, e.g., tasks are different (supervised

classification vs. anomaly detection)
• experimental settings differ, e.g., same datasets but different splits
• experiments lack temporal/spatial diversity [18]
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Mislabelling in CIC-IDS2017 [23]

CICFlowMeter issue with misordered packets

CIC-IDS2017 contains duplicated packets (up to 13 times)
Further investigation led to the discovery of labeling error
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Mislabelling in CIC-IDS2017 [23]

CICFlowMeter issue with misordered packets
• flow processing happens according to the order of packets in the

dataset, not the timestamp
• from 0.028 to less than 0.1% frames are misordered resulting in

swapped flows

CIC-IDS2017 contains duplicated packets (up to 13 times)
Further investigation led to the discovery of labeling error
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Mislabelling in CIC-IDS2017 [23]

CICFlowMeter issue with misordered packets
CIC-IDS2017 contains duplicated packets (up to 13 times)
• may be due to port mirroring misconfiguration on the testbed switch

Further investigation led to the discovery of labeling error
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Mislabelling in CIC-IDS2017 [23]

CICFlowMeter issue with misordered packets
CIC-IDS2017 contains duplicated packets (up to 13 times)
• may be due to port mirroring misconfiguration on the testbed switch
• more than 4.5% of the packets are duplicated per day

Further investigation led to the discovery of labeling error
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Mislabelling in CIC-IDS2017 [23]

CICFlowMeter issue with misordered packets
CIC-IDS2017 contains duplicated packets (up to 13 times)
Further investigation led to the discovery of labeling error
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Mislabelling in CIC-IDS2017 [23]

CICFlowMeter issue with misordered packets
CIC-IDS2017 contains duplicated packets (up to 13 times)
Further investigation led to the discovery of labeling error
• 10s of thousands of port scans were wrongly labeled as benign
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Datasets: A Nail in the Coffin? [25]

The role of publicly available datasets in advancing NIDS development
found to be questionable

Simplifications of the data collection environment
Contemporaneity and effectiveness of the attacks
Representativeness of the normal baselines
Other concerns
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Datasets: A Nail in the Coffin? [25]

The role of publicly available datasets in advancing NIDS development
found to be questionable

Simplifications of the data collection environment
• the specter of lab-only evaluation (pitfall I )
• traffic generation environment should feature heterogeneous and

non-stationary workloads

Contemporaneity and effectiveness of the attacks
Representativeness of the normal baselines
Other concerns
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Datasets: A Nail in the Coffin? [25]

The role of publicly available datasets in advancing NIDS development
found to be questionable

Simplifications of the data collection environment
Contemporaneity and effectiveness of the attacks
• datasets tend to become rapidly obsolete
• some attacks are quite ineffective against suitably-configured targets

Representativeness of the normal baselines
Other concerns
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Datasets: A Nail in the Coffin? [25]

The role of publicly available datasets in advancing NIDS development
found to be questionable

Simplifications of the data collection environment
Contemporaneity and effectiveness of the attacks
Representativeness of the normal baselines
• normal traffic baseline is crucial
• problem typically neglected

Other concerns
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Datasets: A Nail in the Coffin? [25]

The role of publicly available datasets in advancing NIDS development
found to be questionable

Simplifications of the data collection environment
Contemporaneity and effectiveness of the attacks
Representativeness of the normal baselines
Other concerns
• bugs of the feature extractor leading to incorrect flow records
• data labeling
• class imbalance
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Datasets: A Nail in the Coffin? [25]

The role of publicly available datasets in advancing NIDS development
found to be questionable

Simplifications of the data collection environment
Contemporaneity and effectiveness of the attacks
Representativeness of the normal baselines
Other concerns (already mentioned earlier!)
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The Temptation of Synthetic Legitimate Traffic [26]

Aside from the availability of data due to privacy concerns or neglect

space the one-size-fits-all dataset does not exist:

time the traffic data is assumed to be
drawn independently and identically:
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The Temptation of Synthetic Legitimate Traffic [26]

Aside from the availability of data due to privacy concerns or neglect

space the one-size-fits-all dataset does not exist: environments are
specific

time the traffic data is assumed to be
drawn independently and identically: environments are
non-stationary

Additionally, we shall move away from a reactive stance: (new) attack
strategies may be anticipated
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Generative Adversarial Networks (GAN) [28]

GANs are composed of two competing NNs (Figure is courtesy of M.R.
Shahid [27])
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Learning-based IoT Traffic Generation [27]
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Evaluating a Generator [29]

Dataset, although synthetic, still requires a certain level of quality. Since
no generally applicable evaluation method was available, we propose our
criteria:

Realism: a synthetic sample should be sampled from the same
distribution as the real data

Diversity: the distribution of the generated samples should have the
same variability as the real data

Novelty: a generated sample should be sufficiently different from
the samples of the real distribution

Compliance*: generated network traffic must also conform to
specifications, standards
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Network Traffic Generation Evaluation Framework [29]

Proposed a BN approach using Hill Climbing with two ways to
encode numerical features

Compared against GAN-based approaches from the state of the art

Generated data using these approaches for 3 different source
datasets

Used the framework metrics for to evaluate the generated data

Used two baselines (source data, data copying approach)
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Generation Evaluation Results

BNs overall better at preserving Realism, Diversity and Compliance

GANs are less effective in tabular data generation

CTGAN particularly prone to mode invention

NetShare’s invalid data due to failure encoding numerical features
correlation

BNs more explainable: features’ conditional dependency
characterizes traffic patterns

BNs consistently emerge as the most efficient model
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GANs are less effective in tabular data generation

CTGAN particularly prone to mode invention

NetShare’s invalid data due to failure encoding numerical features
correlation

BNs more explainable: features’ conditional dependency
characterizes traffic patterns

BNs consistently emerge as the most efficient model
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Framework for Data-driven NIDS Evaluation [30]
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Collaborative Intrusion Detection: Federated Learning

FL offers a way to distribute learning across several clients training local
models on private data (Figure is courtesy of S. Chennoufi [31])
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Collaborative Intrusion Detection: Federated Learning

Recent SoK [31] on FL-IDS for 5G demonstrates several evaluation
shortcomings

Lack of 5G datasets

Datasets are devoid of attack traffic

Evaluation resorts to using publicly available IDS datasets

Evaluation metrics concentrate on accuracy, leaving out FPR
Evaluation lacks realism

• Validation is done on private test set at the central server
• Training data is randomly distributed
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Collaborative Intrusion Detection: Federated Learning

Recent SoK [31] on FL-IDS for 5G demonstrates several evaluation
shortcomings

Lack of 5G datasets

Datasets are devoid of attack traffic

Evaluation resorts to using publicly available IDS datasets

Evaluation metrics concentrate on accuracy, leaving out FPR
Evaluation lacks realism
• Validation is done on private test set at the central server
• Training data is randomly distributed

We advocate for more realistic evaluation leveraging non-IID data
distribution across clients
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Evaluation of ML-based NIDS: Takeaways

Lack of a standardized evaluation approach [1]

Datasets and metrics need to be adapted to the property to
assess [30]

Good quality (legitimate) data is lacking (mostly neglected [25])

Data, code, hyperparameters are needed to reproduce results [1]

Baselines are needed to demonstrate the worth of ML/DL [15]

Comprehensive evaluation is needed in time and space, including
unbalanced, non-IID or noisy scenarios
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Outline

1 Introduction

2 Intrusion Detection

3 Intrusion Detection as a Classification Task

4 Challenges in ML-based IDS Research

5 Evaluation of Intrusion Detection Systems

6 Security of ML-based IDS

7 Perspectives
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Threats against ML Systems [32]
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Poisoning attacks [32]
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Evasion Attacks [33]

Threat model

Knowledge restriction
• white box: training dataset and model architecture
• black box: nothing

Attack objective
• untargeted

I confidence reduction: decrease performance
I misclassification

• targeted
I targeted misclassification: for any input
I source/target misclassification: for a certain input

Problem formulation
Minimize: D(x , x + δ) such that:

C(x + δ) = t (constraint 1)

x + δ ∈ [0, 1]n (constraint 2)
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Properties of Adversarial Examples [33]

Perturbation (Lp norms):

Domain constraints

Manipulation space:

55/79 2024/07/15 G. Blanc (TSP, IP Paris) Learning-based Network Intrusion Detection



Properties of Adversarial Examples [33]

Perturbation (Lp norms): used to compute a minimal pertubation
between x and xadv

• L0: counts number of modified features
• L1: |x1 − xadv

1 |+ · · ·+ |xn − xadv
n | (Manhattan distance)

• L2:
√

(x1 − xadv
1 )2 + · · ·+ (xn − xadv

n )2 (Euclidean distance)
• L∞: max(|x1 − xadv

1 |, . . . , |xn − xadv
n |)

Domain constraints

Manipulation space:
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Properties of Adversarial Examples [33]

Perturbation (Lp norms):
Domain constraints
• Syntactic constraints [34]:

I out-of-range: violations of theoretical bounds (e.g., TTL > 255)
I binary: violations of the binary nature of a field (e.g., float)
I multiple category: violation of the one-hot encoding of a field (e.g., both

TCP and UDP)
• Semantic links [35, 36]:

Manipulation space:
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Properties of Adversarial Examples [33]

Perturbation (Lp norms):
Domain constraints
• Syntactic constraints [34]:
• Semantic links [35, 36]:

I G0: features related to backward flows (from the server), computed from
other features

I G1: independent features not used to compute other features
I G2: independent features used to compute other features
I G3: features dependent on a batch of packets or with underlying physical

constraints

Manipulation space:
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Properties of Adversarial Examples [33]

Perturbation (Lp norms):

Domain constraints
Manipulation space:
• feature-based
• traffic-based (also known as problem-based)

55/79 2024/07/15 G. Blanc (TSP, IP Paris) Learning-based Network Intrusion Detection



Are Adversarial Examples against NIDS Practical? [34]

Proportion of generated samples violating the practicality criteria.
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Feature Space vs. Problem Space [37]

Example of projection of the feature-space attack vector x + δ∗ in the
feasible problem space, resulting in side-effect features η
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Towards XAI-driven Adversarial Examples for NIDS [38]

Main objectives

Problem-space

Practical

Decision-driven
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Towards XAI-driven Adversarial Examples for NIDS [38]

Main objectives

Problem-space

Practical

Decision-driven

Requirements

Enumerate valid traffic manipulations and evaluate their impact on
feature space

Design feature selection criteria: non-functional, non-correlated,
manipulated from problem-space, impactful on evasion

Discover the decision boundary through XAI
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XAI-driven Adversarial Perturbation: Method [38]

1. Compute feature importance, e.g., using Integrated Gradients or
SHAP

2. Compute correlation matrix of features

3. Select most important AND less correlated features

4. Plot True Positives and Negatives (e.g., False Negatives) into
projected feature space (restricted to the selected features)

5. Evaluate potential feature-space manipulation and choose ones that
are possible in problem-space

6. Generate adversarial examples by applying the retained
manipulation

59/79 2024/07/15 G. Blanc (TSP, IP Paris) Learning-based Network Intrusion Detection



XAI-driven Generation: Whitebox Use Case [38]

Step 0: Train a classifier on CIC-IDS2017 dataset and fine-tune it using
real attack data generated in a testbed
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XAI-driven Generation: Whitebox Use Case [38]

Step 1: Compute feature importance using
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XAI-driven Generation: Whitebox Use Case [38]

Step 2: Project the TP and FN into the important features space
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XAI-driven Generation: Whitebox Use Case [38]

Step 3: Increase Fwd Seg Size Min by adding padding to SYN packets
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XAI-driven Generation: Whitebox Use Case [38]

Step 4: Manual validation

generated sample bypasses detection in feature space

generated sample compromises target in problem space
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Adversarial Examples against ML-based NIDS: Takeaways

DL algorithms are inherently vulnerable to adversarial examples

Most attack scenarios of the SoTA are unrealistic [39, 1]

Many approaches from the SoTA are unpractical [34]

The flow feature extraction function is not invertible in the network
traffic domain [37]

New approaches generating problem-space adversarial examples
are emerging but are difficult to evaluate

Problem-space adversarial examples require exploit-based
validation
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Limitations of ML/DL applied to NIDS

Data labelling approaches towards semi-supervised approaches

Dataset quality needs to be uniformized

Evaluation approaches need to be standardized

Robustness wrt both data dynamics (drifts) and adversarial
examples require more practical assessment

The network flow format has lived: additional indicators are needed
to go beyond anomalies

Need to extract and organize the intrusion knowledge
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ML for Cybersecurity: Beyond Threat Detection [1]

Alert Management
• Alert fusion
• Alert filtering
• Alert prioritization

Raw-data Analysis
• Operational decisions
• Labelling optimization

Risk Exposure Assessment
• Penetration testing
• Compromise indicators

Cyber Threat Intelligence
• Internal sources
• External sources
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Future works

NIDS: towards hybrid and knowledge-based model, e.g.,
provenance graphs, knowledge graphs or GNN-IDS [40]

evaluation: towards standardized data-driven methodologies

datasets: towards unified dataset quality metrics, best practices for
data generation

synthetic traffic: towards temporal flow generation

adversarial examples: towards more realistic attack scenarios,
data-driven efficient generation
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Thanks for your attention!

� https://cloudgravity.github.io

� @cloudgravity

@ gregory.blanc@telecom-sudparis.eu

https://cloudgravity.github.io


Advertisement: Postdoc

If you are a Ph.D in Cybersecurity and/or Machine Learning, we have
several postdoctoral fellowships (to start ASAP)

SuperviZ Explaining IDS Decisions through Visualisations

SuperviZ Test Data Generation using Traffic Manipulation

CKRISP Human-AI Interaction for Cyberattack Data Generation

Do not hesitate to ask about them or drop me an email!
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Advertisement: ARTMAN 2024

2nd Workshop on Recent Advances in Resilient and
Trustworthy Machine learning-driveN systems

co-located with ACSAC 40

set in Hawaii

to be held on December 9th

other important dates:
Submission Deadline September 1, 2024
Acceptance Notification October 6, 2024
Final Manuscript Deadline November 3, 2024
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